J. Donald Tillman
  January 1999
Abstract
  
  This is an original design for an interpolating scanner, a circuit
  with a number of signal inputs, a control voltage input and a signal
  output.  The output effectively selects between the inputs, fading
  from one to the next, as the control voltage rises.
  
  Prior scanner circuits include:
  
    - 
      the electromechanical scanner used on Hammond Organs (ref) which uses
      capacitive coupling between spinning metal plates.
    
 
    - 
      Juergen Haible's interpolating scanner
       which uses opamp circuits generating triangular windows
      to drive current controlled amplifiers.
    
 
    - 
      A two-channel panner circuit might be considered a degenerate form of
      a scanner.  The data sheet for the Precision Monolithics, Inc. 
      SSM-2024 current-controlled amp IC shows a
      stereo panner, they call it an "Exponential Cross-Fade Controller",
      where two CCAs are controlled from a PNP differentialamp.  The circuit
      is pretty straightforward and I'm sure similiar circuits have been
      used before.
    
  
  
  
  The circuit presented here is inspired by and similiar to JH's scanner
  except that drive circuit is an unusual extrapolation of the
  differential amplifier topology used in the PMI panner.  This approach
  has some advantages:
  
    - 
      a smoother transition between inputs
    
 
    - 
      the total drive current (the sum of all the drive currents) is from a
      constant current source assuring that the sum of the individual gains
      is held constant
    
 
    - 
      low parts count
    
 
    - 
      control of the transition shape
    
 
  
  
  The main disadvantage is that it requires transistor and diode
  matching for best performance (although it seems to work pretty well
  for unmatched devices).
  
  The design is extendible to greater or fewer inputs.
 
Interface Requirements
  
  For this particular design I'm using the following interface specs:
  
    8 signal inputs.
    Signal inputs are -10 dBu, 0.7 volts p-p, 50K ohms, DC to high audio
    (roughly 20KHz). 
    Signal output is -10 dBu, 0.7 volts p-p, low impedance, DC to high
    audio.
    Control voltage input is between -2.5 and +2.5 volts, 50K ohms, DC
    to high audio.
  
 
Scanner Design
  
  Figure 1 below shows a block diagram of the Interpolating Scanner.
  There is a Current Controlled Amplifer (CCA) of traditional design for
  each signal input.  Each CCA interfaces appropriately to the input
  signal, has a current source output, and a gain (transconductance)
  that is directly proportional to its control current input.  The CCA
  outputs are summed by shorting them directly together.  A buffer
  amplifier stage provides the appropriate output level and impedance.
  
  
    
      
	
	   
	 | 
      
      
	| 
	  Figure 1. Block diagram of the interpolating scanner.
	 | 
      
    
  
  
  The CCAs are transconductance amplifiers; the input is a voltage, the
  output is a current, the gain is linearly proportional to the control
  current, and in this case the control current is expected to be from
  0.0 to 2.0 mA.  More on this later.
  
  Figure 2 below shows the details of the Scanner Drive circuit.
 
 
  
  Figure 3 below shows schematics of the CCAs and the buffer amp.
 
  
  
  Figure 3.  Current Controlled Amplifier and Buffer Amp.
 
Scanner Drive Theory of Operation
  
  In the schematic above, the opamp provides a flexible interface to
  the outside world (you can add multiple inputs here as well as manual
  controls), scales the control voltage slightly, and supplies a low
  impedance source of the control voltage to the rest of the circuit.
  
  The issue in extending a diff amp to more than two inputs is to not
  only gradually turn one transistor off and another on, but also turn
  that second one off and the next one on in the same manner.
  
  Resistors R9 through R14 provide 190mV voltage steps up from the
  control voltage and resistors R15 through R20 provide 190mV voltages
  steps up from ground.  The diodes select the higher of the two values.
  
  
  Here are three plots I drew to show how this works.
  
  The X axis is the voltage tapped off of the opamp in volts and the Y
  axis is the various base voltages in volts.  For clarity, the base
  voltages here are before the base diodes so offset everything
  down by one diode voltage drop to get the actual base voltages.
  
 
  In the first plot we see the constant voltages presented by the
  resistor string on the right.  These are 190 mV apart.
  
  
  
  In the second plot we also see a string of input signal voltages,
  presented by the resistor string on the left.  These voltages are also
  190mV apart.
  
  
  
  In the third plot we see the effect of the diodes, selecting the most
  positive of each of the voltage pairs.  Again, for clarity this diagram
  shows voltages before the diode voltage drop.  Note that the extreme
  outputs are not paired.  Also note that the voltage between crossover
  points is two voltage steps.
  
 
Shape Control
  
  There is some control over the shape of the interpolation curve.  The
  circuit presented above is optimized for a smooth and complete
  transition from one stage to the next, but by varying the control
  voltage swing and the difference between the voltage steps you can
  customize the curves.
  
  Here are three plots from a SPICE simulation of the scanner drive
  circuit.  All have the input control voltage on the X axis, 1 volt per
  division, and the individual output currents on the Y axis, 0.5mA per
  division, with EIA colors representing output currents I1 through I8.
  
  
  
  The first plot is with double the step voltage and shows very sharp
  transistions.  It is the scanner drive circuit above with the
  following values changed:  
  
    step voltage = 380mV
    R2 = 33 k
    R4,5 = 3.3k
    R8 = 150
  
  
  
  
  
  
  The second plot is the schematic above.
  
    step voltage = 190mV
    R4,5 = 6.8k
  
  
  
  
  
  
  The third plot is with roughly half the step voltage.  Note that at the
  extremes of the input range all of current from the current source is
  channeled through I1 or I8, but the intermediate outputs have so much
  spread that they steal from their neighbor's peak currents as the sum
  current stays constant.
  
    step voltage = 90mV
    R2 = 33k
    R4,5 = 16k
    R8 = 620
  
  
  
  
  A potential strategy for an optimal shape would be to select step
  voltage value where the I2 through I7 peak currents are 95% of the I1 
  or I8 shelf currents; 95% percent being a somewhat arbitrarily choosen
  value near unity.  It is possible to calculate an approximation to the
  appropriate step voltage by solving the equation of a differential amp
  in this situation:
  
    Vstep = 2 * 0.026 * ln( 2 * (Rp / (1-Rp)))
  
  
  Where Vstep is the step voltage and R is
  the ratio of the peak current of one of the intermediate outputs (I2
  through I7) to the shelf current of the outside stages (I1, I8).  For
  Rp = 0.95, Vstep is 190 mV, and this is the value used in the
  schematic. 
 
Matching Issues
  
  Do the transistors in this circuit need to be matched?  Close matching
  is not required, and depending upon the application, none may be
  necessary.  For most electronic music applications I would suggest the
  minimal matching procedure: check the forward voltage of the diodes
  and the emitter-base junctions of the transistors at some low current,
  say 100 uA, and throw out the ones with extreme numbers.
  
 
  I built a breadboard version of this circuit without matching the
  transistors, and differences in the curves of the individual outputs
  were visible, but not bad.  As I threw out extreme values the curves
  matched up better.
 
Current Controlled Amplifiers
  
  The current controlled amplifiers are based on the CA3280 operational
  transconductance amplifier (OTA).  This model was chosen because
  
    - 
      it has very low noise
    
 
    - 
      it has linearizing input diodes to minimize distortion
    
 
    - 
      it has a linear control current to gain relationship
    
 
    - 
      the control current is referenced to near the negative supply voltage
      
      (makes the drive circuit a little easier to design)
     
    - 
      it will take a higher control current than most
      
      (this allows LEDs to be inserted in the current control signals)
     
  
  
  In this design the input diodes are biased to 30uA which will set the amp's
  input impedance to roughly 2.0 kohms.  With the two 24 kohm input
  resistors this presents at 50 kohm input resistance and an input attnuation
  of 0.04.  Standard -10 dBu audio signals run 0.7 v p-p and will be
  brought down to 27mV p-p at the OTA input terminals.
  
  The scanner drive is designed for a maximum control current of 2.0 mA,
  high enough to directly power an low-current LED indicator in series with
  the control current input (thanks to JH for this suggestion) as well as
  supplying plenty of gain.
  
  The transconductance of the CA3280 OTA is:
  
    Gm = 15 * Iabc
  
  So the common OTA load resistance is choosen for unity gain:
  
    Rload = 1 / ([Rd / Rin(total)]) * Gm(max))
  
  which comes to 820 ohms.
 
Additional Features
  
  Control of the transition shape with a front panel knob.  This might
  be especially useful if the scanner was going to be used as a
  synthesizer module.  I would replace R4,5 with a current source just
  like on the other side and run them together with a dual pot which
  would also adjust the control voltage gain.
  
  Stereo.  Simply double up the CCAs and buffer amps; run both sets off
  of the same scanner drive.
 
Applications
  
  The primary application I had in mind for this device was for a modern
  analog implementation of the Hammond Flying Chorus.  I'm currently
  writing an article describing it.
  
  As JH has suggested, an interpolating scanner module for a modular
  synthesizer can be very useful both for creating waveforms and control
  voltages.  
 
Status
  
  I have built breadboards of several versions of the scanner drive
  circuit.  I have not built the CCAs or a whole scanner unit yet.
  Currently I'm working on a three input scanner project.
 
References
  
  Hammond Organ Service Manual, 
  
    http://theatreorgans.com/hammond/faq/a-100/a-100.html
  
  
  
  Juergen Haible,
  
    Interpolating Scanner, 
  March 1998.
  
  
  
  Precision Monolithics Inc., SSM-2024 Quad Current Controlled Amplifier
  Data Sheet, November 1989, from PMI Data Book, Volume 10, Analog
  Integrated Circuits, 1990.